Página 1 de 1

Tablas y nomogramas para calculos de tuberías en instalación de Aire comprimido

NotaPublicado: 24 Abr 2012, 14:35
por rcr
Hola a todos,
Estoy realizando el proyecto de instalación para suministro de aire comprimido en una nave industrial, me gustaría que alguien me facilitara las tablas de dimensionamiento ó nomogramas que habitualmente se emplean. Muchas gracias.

Re: Tablas y nomogramas para calculos de tuberías en instalación de Aire comprimido

NotaPublicado: 21 May 2013, 11:11
por ALFE
Hola rcr,

Estoy haciendo el proyecto final de carrera en una empresa, y es sobre la instalación de aire comprimido. No se si te valdrá de mucho lo que fui sacando en conclusión a lo largo de estos meses, porque me cuesta mucho encontrar información y ahora mismo estoy un poco bloqueada.

CÁLCULO DE TUBERÍAS:
El diámetro de las tuberías no debería elegirse conforme a otros tubos existentes ni de acuerdo con cualquier regla empírica, sino en conformidad con: el caudal, la longitud de las tuberías, la pérdida de presión (admisible), la presión de servicio y la cantidad de estrangulamientos de la red. Por tanto, primero se calculará el diámetro necesario teniendo en cuenta la longitud de la tubería, el consumo de aire en toda la industria, sumando futuras ampliaciones, la presión de trabajo y las caídas supuestas de presión en la red. Después se calculará el equivalente de pérdidas de carga que ocasionan los diversos racores, y que se transforman en metros de longitud de tubería recta. Esta longitud se suma a la anterior, y se vuelve a efectuar un nuevo cálculo sobre el ábaco.

En la práctica se utilizan los valores reunidos con la experiencia. El nomograma de la figura ayuda a encontrar un diámetro de la tubería de forma rápida y sencilla.

http://www.cohimar.com/util/neumatica/neumatica4.html (el primer ábaco que aparece)

Para obtener el diámetro de la tubería en el nomograma, se une la línea A (longitud del tubo), con la B (cantidad de aire aspirado) y se prolonga el trazo hasta la C (eje 1). Este punto se une con el punto de la línea E (`presión), obteniendo de este modo en la línea F (eje 2) una intersección. Se unen finalmente los puntos de intersección de los ejes 1 y 2, cortando esta recta la línea D (diámetro nominal de la tubería) en un punto que proporciona el diámetro deseado.
Las pérdidas originadas en los elementos de unión y válvulas son traducidas al equivalente en metros de tubería recta de un diámetro determinado. Los valores de dicha tabla son sólo orientativos y pueden ser utilizados si no se disponen de otros más fiables que proporcionen los propios fabricantes de estos elementos auxiliares de la red de distribución.

http://oficioapuntes.blogspot.com.es/20 ... carga.html

Como regla básica el dimensionamiento de los tubos debe favorecer el criterio conservador. Si al dimensionar un diámetro el valor no coincide con los estándares, se recomienda colocar el diámetro inmediatamente superior. Esto conduce a tener un sistema donde el aire fluirá con menos pérdidas y se dispondrá de una reserva para aumentos de capacidad en el futuro.

Determinación del diámetro más económico

La búsqueda de la tubería más económica está supeditada al tipo de instalación que vayamos a proyectar, pues todo depende de que podamos admitir una caída de presión mayor o menor, y de si la tubería va a ser montada de modo permanente o transitorio. Una evaluación de las ventajas o inconvenientes de la utilización del aire comprimido sobre el precio de la tubería nos dará la solución pertinente.
Sin embargo, como práctica común, cuando alguien pretende instalar o reemplazar una red de aire comprimido en su industria, se encuentra falto de criterio que le puedan llevar a encontrar la solución correcta desde el punto de vista económico, o a elegir la más conveniente de las ofertas que le hagan.
Esta falta de criterios le hace inclinarse con frecuencia hacia la proposición de compra más baja, lo que significa, en un alto porcentaje, un mal negocio, una inversión de capital de dudosa rentabilidad.
En efecto, en el coste del transporte del aire comprimido intervienen dos factores: la amortización del precio global de la tubería con su montaje y la pérdida de presión o energía durante el desplazamiento.
El primer factor aumenta con el diámetro de tubería; el segundo, y según venimos recalcando, disminuye.
Basándose en la experiencia, a pequeños caudales, los errores cometidos en la elección de tubería, en uno u otro sentido, son proporcionalmente mayores que en los grandes caudales. Sin embargo, para los grandes caudales, un error en aumentar el diámetro de tubería es menos grave, aunque eleve su precio, que si reducimos su sección.
En resumen, no hay que obsesionarse con el dato precio-diámetro de tubería si con ello abandonamos una de las reglas fundamentales de la neumática: reducir la pérdida de presión hasta límites permisibles. En la inmensa mayoría de las herramientas o equipos neumáticos, la presión de entrada ejerce una gran influencia sobre su rendimiento.

Re: Tablas y nomogramas para calculos de tuberías en instalación de Aire comprimido

NotaPublicado: 21 May 2013, 11:17
por ALFE
Y para el cálculo de pérdidas de presión:

Las redes fijas de distribución de aire comprimido deben ser dimensionadas de manera que la pérdida de carga total en las tuberías no exceda de 0,1 bar entre el compresor y el punto más remoto de consumo.
En la aseveración anterior deben estar incluidas, tanto la pérdida de carga en la conexión de mangueras flexibles y sus acoplamientos como todos los demás accesorios de tubería. Es particularmente importante para dimensionar correctamente estos componentes, la elevada caída de presión que ocurre con frecuencia en este tipo de conexiones. Al final la suma de todas estas pérdidas de carga nos podrían dar un resultado escandaloso e intolerable para el rendimiento de potencia de la herramienta o de la máquina automatizada mediante circuitos neumáticos.
El método más general para calcular las pérdidas de carga debidas a la fricción en una tubería es la ecuación de Darcy-Weisbach, que es la ecuación más ampliamente difundida en fluido-dinámica y con la que se obtienen los resultados más precisos.
Permite el cálculo de la pérdida de carga debida a la fricción dentro una tubería, y no presenta restricciones. Es utilizable en todo tipo de tuberías y con todo tipo de fluidos.
La ecuación fue inicialmente una variante de la ecuación de Prony, desarrollada por el francés Henry Darcy. En 1845 fue refinada por el sajón Julius Weisbach, hasta la forma en que se conoce actualmente:

h_f=f∙L/D∙V^2/(2∙g)=f∙L/D^5 ∙(8∙Q^2)/(π^2∙g)

h_f Pérdida de carga debida a la fricción
f Factor de fricción de Darcy
L/D Relación entre la longitud y el diámetro de la tubería
V Velocidad media de flujo
g Aceleración debida a la gravedad (9.81 m/s2)

La dificultad de esta ecuación radica en la determinación del factor de fricción f.
El factor de fricción f es adimensional y varía de acuerdo a los parámetros de la tubería y del flujo. Este puede ser conocido con una gran exactitud dentro de ciertos regímenes de flujo; sin embargo, los datos acerca de su variación con la velocidad eran inicialmente desconocidos, por lo que esta ecuación fue, en sus inicios, superada en muchos casos por la ecuación empírica de Prony.
Como se ha visto anteriormente, la dificultad de la ecuación de Darcy-Weisbach radicaba en la determinación del factor de fricción. La razón de esta dificultad está en resolver la ecuación de White-Colebrook que es la que relaciona este factor con los parámetros de los que depende (rugosidad relativa y número de Reinolds).
La expresión de la ecuación de White-Colebrook es la siguiente:

1/√f=-2∙〖log〗_10∙[(ε⁄D)/3.7∙2.51/(R∙√f)]

R Número de Reynolds
f Factor de fricción de Darcy
ε/D Rugosidad relativa

El campo de aplicación de esta fórmula se encuentra en la zona de flujo turbulento y en la de transición de laminar a turbulento.
Si se observa la ecuación, puede verse que se trata de una ecuación implícita, o dicho de otro modo, f se encuentra en ambos miembros de la ecuación y no hay posibilidad de despejarlo para su resolución.
Con este tipo de ecuaciones hay que recurrir a métodos iterativos para proceder a su resolución. De ahí su dificultad y el hecho que desde su formulación haya sido escaso el uso que se ha hecho de ella a favor de aproximaciones obtenidas a partir de la misma para situaciones y campos de aplicación estrechos.
En el caso del flujo de aire comprimido, una aproximación de la ecuación de Darcy-Weisbach mediante la que se pueden calcular estas pérdidas de presión (pérdidas de carga), es la siguiente ecuación para tubos rectos:

∆p=450∙ (Q_c^1.85∙L)/(D^5∙P)

∆p Caída de presión o pérdida de carga en bar
Q_c Caudal de aire en l/s
L Longitud equivalente de tubería recta en m
D Diámetro interior de la tubería en mm
P Presión absoluta en cabeza de distribución en bar

Los valores típicos para la pérdida de carga máxima admisible en el cálculo de las diferentes partes de la red de aire comprimido, se pueden ver a continuación:

Tuberías principales de servicio: 0.03 bar
Tuberías de distribución: 0.05 bar
Mangueras : 0.02 bar
Total en la instalación completa : 0.1 bar